The Italian domatic number of a digraph
author
Abstract:
An {em Italian dominating function} on a digraph $D$ with vertex set $V(D)$ is defined as a function$fcolon V(D)to {0, 1, 2}$ such that every vertex $vin V(D)$ with $f(v)=0$ has at least two in-neighborsassigned 1 under $f$ or one in-neighbor $w$ with $f(w)=2$. A set ${f_1,f_2,ldots,f_d}$ of distinctItalian dominating functions on $D$ with the property that $sum_{i=1}^d f_i(v)le 2$ for each $vin V(D)$,is called an {em Italian dominating family} (of functions) on $D$. The maximum number of functions in anItalian dominating family on $D$ is the {em Italian domatic number} of $D$, denoted by $d_{I}(D)$.In this paper we initiate the study of the Italian domatic number in digraphs, and we present some sharpbounds for $d_{I}(D)$. In addition, we determine the Italian domatic number of some digraphs.
similar resources
A note on the Roman domatic number of a digraph
Roman dominating function} on a digraph $D$ with vertex set $V(D)$ is a labeling$fcolon V(D)to {0, 1, 2}$such that every vertex with label $0$ has an in-neighbor with label $2$. A set ${f_1,f_2,ldots,f_d}$ ofRoman dominating functions on $D$ with the property that $sum_{i=1}^d f_i(v)le 2$ for each $vin V(D)$,is called a {em Roman dominating family} (of functions) on $D$....
full textThe signed Roman domatic number of a digraph
A signed Roman dominating function on the digraphD is a function f : V (D) −→ {−1, 1, 2} such that ∑ u∈N−[v] f(u) ≥ 1 for every v ∈ V (D), where N−[v] consists of v and all inner neighbors of v, and every vertex u ∈ V (D) for which f(u) = −1 has an inner neighbor v for which f(v) = 2. A set {f1, f2, . . . , fd} of distinct signed Roman dominating functions on D with the property that ∑d i=1 fi(...
full textThe Roman domination and domatic numbers of a digraph
A Roman dominating function (RDF) on a digraph $D$ is a function $f: V(D)rightarrow {0,1,2}$ satisfying the condition that every vertex $v$ with $f(v)=0$ has an in-neighbor $u$ with $f(u)=2$. The weight of an RDF $f$ is the value $sum_{vin V(D)}f(v)$. The Roman domination number of a digraph $D$ is the minimum weight of an RDF on $D$. A set ${f_1,f_2,dots,f_d}$ of Roman dominating functions on ...
full textThe domatic number problem
A dominating set of a graph G =( P’, E) is a subset D of Vsuch that every vertex not in D is adjacent to some vertex in D. The domatic number d(G) of G is the maximum positive integer k such that V can be partitioned into k pairwise disjoint dominating sets. The purpose of this paper is to study the domatic numbers of graphs that are obtained from small graphs by performing graph operations, su...
full textThe b-domatic number of a graph
Besides the classical chromatic and achromatic numbers of a graph related to minimum or minimal vertex partitions into independent sets, the b-chromatic number was introduced in 1998 thanks to an alternative definition of the minimality of such partitions. When independent sets are replaced by dominating sets, the parameters corresponding to the chromatic and achromatic numbers are the domatic ...
full textDomatic Number of Graph Products
A partition of V (G), all of whose classes are dominating sets in G, is called a domatic partition of G. The maximum number of classes of a domatic partition of G is called the domatic number of G. The concept of a domatic number was introduced in [1]. More interesting results on domatically full graphs, domatically critical, domatically cocritical graphs and other domatic numbers can be found ...
full textMy Resources
Journal title
volume 4 issue 1
pages 61- 70
publication date 2019-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023